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INTRODUCTION 

Literature discussing the characterization of the real zeros of transcen- 
dental functions is conspicuously absent (ref. 1). As a result, scientists and 
engineers who wish to determine the zeros of such functions are at a severe 
disadvantage unless they have some prior knowledge concerning the location of 
the zeros. All the iterative schemes available require at least one estimate 
in order to initiate the algorithm.  If the estimate is not sufficiently close 
to a real zero, or if no real zero exists, the iteration may diverge or lead 
to the "wrong" zero (ref. 2). 

This recurrent problem is the motivation for this paper, which charac- 
terizes the real zeros of the transcendental function y = ax + be   (and 
equivalent forms) where a,  b, and c are real numbers and e = 2.71828. 

This transcendental function was chosen because it is the solution of many 
first-order differential equations and sometimes appears in the numerical solu- 
tion of nonlinear differential equations.  Thus, this paper should facilitate 
the solution of many everyday problems, as well as have heuristic value. 

The following discussion addresses the above problem with respect to this 
particular transcendental function by way of theorems.  The theorems speak to 
the questions of the existence, bounds, and number of real zeros.  The answers 
to these questions are particularly important in view of the value of computer 
resources, since they remove the inefficiency involved in starting an iteration 
from a poor initial estimate or in pursuing solutions that do not exist.  It is 
hoped that this discussion will afford insight into other types of transcen- 
dental functions as well. 

DISCUSSION 

Proposition 1:     The transcendental function y = ax + be   has at most 
two distinct real zeros. 

Proof:    Let x-.  and Xo be two zeros of y and let x^ < X£.  Then, by 
Rolle's theorem, there exists a value xt such that x, < xfc < X2, where 

CXj. 
y'(xt) = a + cbe   =0 and y'  denotes the derivative of y.  Now suppose 
that there are more than two zeros of y.  They may be ordered so that 
xi < XT < Xo, ..., xn.     From Rolle's theorem, there exists xt such that 

X! < xt < x2,  
x2 < xm < x3» and so on' where xt ^ xm 

and y'^xt^» y'^xm^ = °" 
cxt        cxm 

Clearly, then,  a + cbe   = a + cbe   = 0, which implies that x = x . 



ex Theorem 1:    Let y = ax + be   and let x_ be a real zero for y. 
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Consider now the case in which c > 0 and x„ < 0 such that cx„ < 0. 
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-ex 

0 

Thus x_ = —e     where — > 0 and  I x_. I = 
0  a a '0' 

-ex 0 

b ~cxo 
x„ = —e     implies that  |xn| = 0 01 

-ex. 

Clearly, e 
|a 

2 If > 2e       or e 

and that 2 

f|lx0l
+lcxol 

0 

Further, 

-ex 

l*0l 
= 2e 

0 

2|bNXol + lCXo' > ln 2'     simPlifyin8»  lx0l 
> 2a 

<l«ol<"' 

> 2 and 
ln 2 

That is, 
+ c 

ln 2 
2a 

+ c 

-cxr 
Now let c < 0 and x_ > 0.  Then we may write ax_ + be    =0 where 

h ~<~X0 h 
x_ > 0 and c > 0 in this form.  Thus,  x_ =—e     where — > 0 and 
0 '  0   a a 

x. < 
CXfc 

For the same reasons as in the case where x_ < 0 

and c > 0, it follows that  |x | > 
ln 2 

2a 
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In the final case,  c < 0, and x_ < 0.  Again, we may write 
CXQ b cxQ 

-ax„ + be   =0 where x« > 0 and c > 0 in this form.  Thus, xn = —e 0 0 '  0  a 



where — > 0. As in the case where c > 0 and x„> 0, it follows that 
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ex Theorem 2:     If the function y = ax + be   has two real zeros, both 

zeros have the sign of c.  Further, where  |x„| > \TL*\, 

2a 
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Proof:     Let  c > 0 and let x,  and x„  be two zeros where x, < x~. 
CXr cx. 

Then ax„ + be   =0 and ax, + be   =0.  From Rolle's theorem, there exist 

xfc such that x^ <  xfc < x2 and y'(xt) = 0; that is,  a + bee 
t  = 0, or 

cx ex. 
a = -bee  .  Substituting in ax„ + be 

c(x2-xt) 
e 

or x„ =   

cx. 
= 0 yields \-cbe  / x„ + be   = 0, 

cx. 

c(x1-xt) 

, which implies that x„ > 0.  Similarly,  x, = 

and x. > 0.  Thus, x„ and x.  have the sign of c, and hence ex.. > 0 
and cx > 0.  From the expressions for x1  and x„ and the fact that 

:, < x < x0, it follows that  |x, I < -,—r and that  lx„| > -,—j 
•LT:z ■<•    C Z

C 

theorem 1, it follows that 
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< 1^1 < and that kT^i« 
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Further,  x, < x„ implies that  |x2| > |x.|. 

In the case where c < 0, the same argument leads to the following 
expressions: 

C^xl~xt^ 
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where x, < x < x„. We may rewrite the expressions as follows; 

-cCxj-x,.) 

Xl " -c 
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wher e c > 0.  Thus,  x, = 

x2 = 

c(xt-x1) 
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and x? = 
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-c 
indicate that x, < 0 and x0 < 0, implying that x < 0. 
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From theorem 1, 
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and the conditions that x, < 0 and x2 < 0 imply that  jxj > |x2| 

Theorem 3:     Let abc < 0.  Then -=— > e if and only if the function 
be 

y = ax + be ex has two distinct zeros. 

Proof:     Let y have two distinct zeros,  x,  and x2<  Then, by theorem 2, 

one zero lies in the interval  I 0 < 0, because if ), I). Also, [y(0)][y(ij 
this were not the case,  x,, a zero, would also be an extremum such that 
y'(x ) = 0.  But by Rolle's theorem there exists another point, 
x , such that x1 < x < x and that y'(x ) = 0, which is impossible 

for this particular function. Hence [y(0)] y(—) = b(J- + be), which is 1 

than zero.  That is, 7— + e < 0 or 
DC 
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That is, 
bl- + be 

be 
+ e < 0 by hypothesis.  Thus, by the intermediate 

value theorem, there exists at least one zero in the interval ( 0, —).  In 

addition, 

m '2  In ^a\ 
 bc_ 

\>  c  / 
+ be 2a A  -2a , 2a 

— In -r 1- 7— c \   be   be 
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< 0.  Thus, by the intermediate value theorem, there 

(1   21nT^ is a zero in the interval I—,  J.  By proposition 1, there are exactly 

two. 

Theorem 4:     Let abc < 0.  Then T— = e if and only if there is exactly 
ex one zero for y = ax + be 

Proof:    Let -^ = e.  Then observe that y(—j = — + be.  But the expres- 

sion be = — implies that y(— J = 0.  That is, — is a zero for y, and 

from theorem 3 it is the only zero. 

Conversely, let XQ be the only zero for y.  Then ax« + be   = 0 0 
cx0 

be cx0 and CXQ =  e  .  But this says that CXQ > 0, and from theorem 1, 
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This implies that In 7— = 1, which implies that — = e. 

Theorem  5: Let abc < 0. Then -™ < e if and only if there are no 
DC 

cx 
zeros for y = ax + be 

Proof:     The proof of this theorem follows immediately from theorems 3 
and 4. 

cx Theorem 6:     abc > 0 if and only if y = ax + be   has exactly one zero, 
XQ, such that CXQ < 0. 

Proof:     Let y have exactly one zero such that CXQ < 0.  Then 

-h  cxn          -be cx0 xQ = —-e    or cx0 =  e  . But cx0 < 0 implies that abc > 0. 

Conversely, let abc > 0.  Then — [y(x)l = cx + "^ecx, which is zero if 

and only if y(x) =0.  If v = cx, then g(v) = v + —ev.  Since it is given 

be that — > 0, any value of v that would satisfy g(v) = 0 must be less than 
cl 

zero.  That is, vQ = cxQ < 0 if such a v exists.  If vQ is a zero for g, 

be 
From theorem 2, there is at most one zero. then, from theorem 1,  |vQ| < 

Observe that 
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ffi 
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Thus, by the intermediate value theorem, there exists a zero for g(v)  and 
hence for y(x). 



EXAMPLES 

The theorems above address all transcendental functions which can be 
expressed in the form y = ax + becx.  The following examples should clarify 
the application of these theorems. 

Example  1:     Find the intervals of the zeros of y = -6x + 3e  . 

Solution:     From theorem 5, this function has no zero. 

•yr 

Example  2:     Find the intervals of the zeros of y = -4x + e . 

Solution:     From theorem 3,  y has two zeros.  If y has two zeros, then 
from theorem 2 they must be positive. Also from theorem 2, the first zero lies 

in the interval ( j-,   l) and the second lies in the interval (1, 4.16). 

-2x 
Example 3:     Find the interval containing the zeros for y = 4x - 2e 

Solution:     y has a single zero (from theorem 6), and its sign is positive. 

From theorem 1, the zero is in the interval ( y, —7—), which equals ( y, 0.12J. 

ALTERNATE FORMS 

ft" ^ t 
Example 4:     Show that the zeros of y = ae  + bte   (where r,  t, 

and s are arbitrary real numbers) are the zeros of a function g = bt + ae 

rt0       stQ 
Solution:     If y has a zero t,-,, we can write ae   = -bt^e  . Dividing 

stQ    (r-s)t0 _ dtQ 
both sides by e   ,  ae       = -btQ or ae   + btQ = 0.  That is,  tQ  i 

a zero of  g = ae  + bt and hence of y. 

Example 5:     Show that by a suitable transformation, the function 
cx u 

y = ax + be  + d can be reduced to a function g = tu + re  and that thus 
the zeros of  g lead directly to those of y. 
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or 

cd u  
g(u) = — + be 

4- J_      U 

= tu + re 
_cd 

where r = be    and t = —. 
c 

Let UQ be a zero for g; then, by using the above theorems on  g, 
we can locate uQ.  Thus, if uQ is a zero, then 

fuo    d\    h
c\--ä) 

d = 0 

"0  d ,„ „ _ ,_ „  _ _   u0  d 
and — — is a zero for y.  But xn = .  Thus, by the inverse trans- 

formation, one can find XQ directly from UQ. 

Example  6:     Show that the function y = ax + b In (ex + d) + p  (where p 
is an arbitrary real number) can be reduced to a function g(x) = ex + kesx + d 

I where k = -e   and s = —rl  whose zeros are those of y. 

Solution:    Let XQ be a zero for y.  Then 

ax,, + b In (CXQ + d) + p = 0 

or 

-axQ - p 
= In (cxn + d) 

or 

and 

Hence, 

-ax0-p 

e       = CXQ + d 

"t "PO \e    Je = CXQ + d 

p_ a 
~b -b*0  j  n 

CXQ - e e    + d = 0 



or 

sxn 
cx0 + ke 

u + d = 0 

Thus, a zero for g is one for y. 

Dryden Flight Research Center 
National Aeronautics and Space Administration 

Edwards,   Calif.,  October 25,   1978 

REFERENCES 

1. Scarborough, J. B.:  Numerical Mathematical Analysis.  Fifth ed.  The 
Johns Hopkins Press, 1962, pp. 192-222. 

2. Burington, Richard Stevens:  Handbook of Mathematical Tables and Formulas, 
Fifth ed.  McGraw-Hill Book Co., c.1973, pp. 186-187. 



1.  Report No. 

NASA TP-1420 
2. Government Accession No. 3. Recipient's Catalog No. 

4. Title and Subtitle 

A CHARACTERIZATION OF THE REAL ZEROS OF A 
PARTICULAR TRANSCENDENTAL FUNCTION 

5. Report Date 
March 1979 

6. Performing Organization Code 

7. Author(s) 

David R. Hedgley 

8. Performing Organization Report No. 

H-1065 

10. Work Unit No. 

9.  Performing Organization Name and Address 

NASA Dryden Flight Research Center 
P.O. Box 273 
Edwards, CA 93523 

11. Contract or Grant No. 

12. Sponsoring Agency Name and Address 

National Aeronautics and Space Administration 
Washington, DC 20546 

13. Type of Report and Period Covered 

Technical Paper 

14. Sponsoring Agency Code 

15. Supplementary Notes 

16. Abstract 

CX 
The real zeros of the transcendental function y = ax + be1""' are characterized, 
and the results should alleviate the difficulty of determining their existence, 
location, and number. 

17. Key Words (Suggested by Author(s)) 

Numerical analysis 

18. Distribution Statement 

Unclassified - Unlimited 

Subject Category 67 

19. Security Classif. (of this report) 

Unclassified 
20. Security Classif. (of this page) 

Unclassified 
21. No. of Pages 

13 

22. Price* 

$3.25 

* For sale by the National Technical Information Service, Springfield, Virginia 22161 
NASA-Langley, 1979 


